Novel Phosphorylations of IKKγ/NEMO

نویسندگان

  • Sun Hwa Lee
  • Zsolt Toth
  • Lai-Yee Wong
  • Kevin Brulois
  • Jim Nguyen
  • June-Yong Lee
  • Ebrahim Zandi
  • Jae U. Jung
چکیده

Central to NF-κB signaling pathways is IKKγ/NEMO, a regulatory subunit of the cytoplasmic IκB kinase (IKK) complex, which undergoes various posttranslational modifications, specifically phosphorylation, to regulate its function. Furthermore, Kaposi's sarcoma-associated herpesvirus (KSHV) FADD-like interleukin-1β (IL-1β) converting enzyme (FLICE) inhibitory protein (vFLIP) activates the NF-κB signaling pathway by directly interacting with IKKγ/NEMO. However, the exact functions of IKKγ/NEMO phosphorylation and its KvFLIP interaction in NF-κB activation remain elusive. Here, we report two novel phosphorylation sites of IKKγ/NEMO and their negative effect on the IKKγ/NEMO-mediated NF-κB signaling pathway. First, the Src family protein tyrosine kinases (SF-PTKs), including Src, Fyn, Lyn, and Fgr, interact with and phosphorylate tyrosine residue 374 (Y374) of IKKγ/NEMO. Mutation of the Y374 residue to phenylalanine (Y374F) specifically abolished SF-PTK-mediated tyrosine phosphorylation, leading to increased tumor necrosis factor alpha (TNF-α)-induced NF-κB activity. Moreover, our mass spectrometry analysis found that the serine 377 residue (S377) of IKKγ/NEMO underwent robust phosphorylation upon KvFLIP expression. Replacement of the IKKγ/NEMO S377 residue by alanine (S377A) or glutamic acid (S377E) resulted in a significant increase or decrease of NF-κB activity and TNF-α-mediated IL-6 cytokine production, respectively. Our study thus demonstrates that the Y374 or S377 residue located at the C-terminal proline-rich domain of human IKKγ/NEMO undergoes phosphorylation upon TNF-α treatment or KvFLIP expression, respectively, resulting in the suppression of IKKγ/NEMO activity to induce NF-κB activation. This study suggests the potential phosphorylation-mediated feedback negative regulation of IKKγ/NEMO activity in the NF-κB signaling pathway. IMPORTANCE Since unchecked regulation of NF-κB has been linked to uncontrolled proliferation and cell death, the downregulation of the NF-κB signaling pathway is as important as its activation. Specifically, the phosphorylation-mediated modification of IKKγ/NEMO is a critical regulatory mechanism of NF-κB activity. Here, we report two novel phosphorylations of IKKγ/NEMO and their negative effects on the NF-κB signaling pathway. First, the Src family protein tyrosine kinase interacts with and phosphorylates tyrosine residue 374 of IKKγ/NEMO, suppressing tumor necrosis factor alpha (TNF-α)-induced NF-κB activity. Additionally, Kaposi's sarcoma-associated herpesvirus (KSHV) FADD-like interleukin-1β (IL-1β) converting enzyme (FLICE) inhibitory protein (KvFLIP) expression induces a robust phosphorylation of the serine 377 residue of IKKγ/NEMO, resulting in a significant decrease of NF-κB activity. Our study thus demonstrates that the Y374 or S377 residue of IKKγ/NEMO undergoes phosphorylation upon TNF-α treatment or KvFLIP expression, respectively, resulting in the suppression of IKKγ/NEMO activity to induce NF-κB activation. This also suggests the potential phosphorylation-mediated feedback negative regulation of IKKγ/NEMO activity in the NF-κB signaling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traf7 Promotes K29-linked Polyubiquitination of Ikkγ /nemo and P65/rela and Represses Nf-κb Activation

TRAF7 PROMOTES K29-LINKED POLYUBIQUITINATION OF IKKγ /NEMO AND P65/RELA AND REPRESSES NF-κB ACTIVATION Tiziana Zotti, Antonio Uva, Angela Ferravante, Mariangela Vessichelli, Ivan Scudiero, Michele Ceccarelli, Pasquale Vito and Romania Stilo Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port’Arsa 11, 82100 Benevento, Italy; BioGeM Consortium, Via Campor...

متن کامل

GSK-3β controls NF-kappaB activity via IKKγ/NEMO

The NF-κB signaling pathway is central for the innate immune response and its deregulation is found in multiple disorders such as autoimmune, chronic inflammatory and metabolic diseases. IKKγ/NEMO is essential for NF-κB activation and NEMO dysfunction in humans has been linked to so-called progeria syndromes, which are characterized by advanced ageing due to age-dependent inflammatory diseases....

متن کامل

NEMO is essential for Kaposi's sarcoma-associated herpesvirus-encoded vFLIP K13-induced gene expression and protection against death receptor-induced cell death, and its N-terminal 251 residues are sufficient for this process.

UNLABELLED Kaposi's sarcoma-associated herpesvirus-encoded viral FLICE inhibitory protein (vFLIP) K13 was originally believed to protect virally infected cells against death receptor-induced apoptosis by interfering with caspase 8/FLICE activation. Subsequent studies revealed that K13 also activates the NF-κB pathway by binding to the NEMO/inhibitor of NF-κB (IκB) kinase gamma (IKKγ) subunit of...

متن کامل

The zinc finger domain of IKKγ (NEMO) protein in health and disease

Inhibitor of κB kinase (IKK) gamma (IKKγ), also known as nuclear factor κB (NF-κB) essential modulator (NEMO), is a component of the IKK complex that is essential for the activation of the NF-κB pathway. The NF-κB pathway plays a major role in the regulation of the expression of genes that are involved in immune response, inflammation, cell adhesion, cell survival and development. As part of th...

متن کامل

NF-κB essential modulator (NEMO)/IKKγ as a c-Myc protein stabilizer independent of IKK activation (13). NEMO induces phosphorylation at Thr58/Ser62 and concomitant stabilization of c-Myc protein through direct interaction in the nucleus. This modification and stabilization of c-Myc by NEMO

The transcription factor c-Myc has been previously shown to be phosphorylated and stabilized by NEMO through direct interaction in the nucleus. Here, we show that NEMO induces up-regulation of the c-Myc target protein, γ-glutamyl-cysteine synthetase (γ-GCS), leading to an increase of intracellular glutathione (GSH) levels and simultaneous enhancement of redox-controlling capacity. NEMO enhanced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012